

Role of Artificial Intelligence in Enhancing Health Communication through Traditional Media Channels in Kogi State

Sheidu Awodi^a*, Joseph Oluchukwu Wogu^b, & Ozioma Nwokedi^c

abc Department of Mass Communication, University of Nigeria, Nsukka

*Corresponding email: awodisheidu@gmail.com

Abstract

This study investigated the role of Artificial Intelligence (AI) in health communication through traditional media in Kogi State, Nigeria, while evaluating its operational scope, public health benefits, and associated technical challenges. A quantitative survey method was adopted, utilising questionnaires to collect data on patterns of AI usage and implementation. The findings indicate that traditional media employs AI technologies to a moderate extent (Mean Score=3.23), with content generation (Mean Score = 3.34) and misinformation detection (Mean Score = 2.90) receiving the highest levels of acceptance. Major barriers to widespread AI adoption include ethical concerns, distrust of AI-generated content, and inadequate digital infrastructure (Mean Score = 3.36). The analysis reveals that AI supports health literacy, enhances audience reach, and improves message comprehension; however, its overall effectiveness is constrained by shortages of skilled personnel and financial limitations. Rogers' (1962) Diffusion of Innovations Theory is used to explain the slow rate of adoption, focusing on three key factors: technological readiness, budgetary capacity, and trust in AI applications within media. The study recommends governmentsponsored training for media professionals, financial support, upgraded transmission infrastructure, and the introduction of institutional regulations to address privacy concerns. With these measures in place, the integration of AI into traditional media can become more efficient, ultimately strengthening health communication and improving public health awareness across Kogi State.

Keywords: Artificial Intelligence, Traditional Media, Health Communication, Adoption and Kogi State.

Introduction

Over the years, Nigerians have relied on traditional media channels such as television, print, and radio for health-related information. These platforms are widely regarded as some of the most trusted sources of health communication, alongside interpersonal strategies that support the development of effective health messaging. According to Ezeaka (2024), traditional media remain essential for disseminating health communication across wide or nationwide audiences. However, there has been limited interrogation of how effective these media channels are in meeting the health needs of the population particularly in today's technologically advanced world characterised by tools such as Artificial Intelligence (AI). The adoption of AI technologies across various sectors has transformed standard operational procedures, and health communication is no exception. The introduction of AI in health communication is believed to bring a lot of new distribution systems,

as it can provide highly personalised content to enhance accessibility and health outcomes (Gambo, 2024). In addition, AI allows the personalisation of content and the improvement of the performance of health information delivery systems.

Mash (2024) argues that AI helps to develop targeted health messages by simplifying the process of conceptualisation to developing and distributing health messages and responding to the feedback. He proposes that using AI during health communication campaigns makes campaigns much effective as it anticipates the results of using resources. Besides, the health communicators may use any predictive simulation programmes to understand which patterns will make the traditional media activities the most successful ones. AI also assists in the predictive analysis of health communication delivery, which leads to better health results in the population. Furthermore, data analytics systems deal with big data to detect the trends of the population health and the desire of the audience to make the delivery of healthcare information better adjusted to the media platforms. According to Zhang (2024), AI have little effect in ensuring that health communication is improved when used in traditional media. To a great extent, this can be attributed to the fact that such platforms cannot provide personalised content and interact dynamically, which are essential features or characteristics of modern health communication. The conventional media usually do not have AI-focused strategies and end up airing generalised messages that cannot cater to the health needs of a certain group in their culture (Greenbook, 2024). This is more so in Kogi State, where the need to pilot the role of AI in delivering optimised health content delivery through traditional media is urgent.

A variety of challenges are associated with the introduction of AI into the process of health communication. The representatives of the research community outline three crucial obstacles in the health industry in Nigeria: underdeveloped digital infrastructure, scarcity of data systems, and unavailability of proficient human resources (Ezeaka, 2024; Gambo, 2024). To manage these obstacles, however, an understanding of the prerequisites towards developing an effective and sustainable AI-integrated approach should be understood in a sophisticated manner. However, the studies that already exist in regard to the application of AI together with the conventional media in health communication in Nigeria are still constrained, especially in Kogi State. This inadequacy in studies with local roots does not allow for specific interventions to boost the effectiveness of the traditional media with the help of AI-powered possibilities.

Statement of the Problem

Traditional media are relevant in providing health information in the region where the use of technology is minimal (Ezeaka, 2024). Although using AI technologies in conventional media opens the possibility of health communication improvements, such platforms are typically weak in individualising messages and interaction (Johnson & Smith, 2024). According to the scholars, AI has the potential to produce and monitor misinformation and divide audiences (Burke-Garcia & Hicks, 2024; Mash, 2024; Lim & Schmalzle, 2023). Nonetheless, in Kogi State, there is not much usage of AI because of the lack of technical skills and infrastructure, as well as due to the high costs and inability to trust AI-generated data (Greenbook, 2024; Ezeaka, 2024; Patel & Williams, 2023). Consequently, the traditional media in the region do not use AI very often, and the ideas that have been left underrepresented and not addressed are those concerning health literacy and the accuracy of information. Moreover, the lag between research analyses of the application of AI to health communication through media in Nigeria is enormous. Most of the research that exists in this area has been carried out on a general level, with little attention to the case of Kogi State (Ezeaka, 2024; Musa, Bello & Adamu, 2022). Lack of empirical evidence related to the topic makes it hard to propose informed policy to drive the initiatives of

communication in health via AI. Hence, this paper explores how, why, and the difficulties associated with the use of AI in health communication using media in Kogi State.

Objectives of the Study

This study aims to examine the extent of AI utilisation among traditional media organisations in promoting health communication in Kogi State. The specific objectives are:

- 1. To determine the extent to which the traditional media use AI in communicating health information in Kogi State.
- 2. To determine the aspect within which AI is used in the traditional media in the course of health communication in Kogi State.
- 3. To assess how the use of enhanced traditional media potentially influences the health outcomes of the people of the state.
- 4. To determine the challenges to the incorporation of AI in the traditional media platforms as health communication hubs.

Conceptual Review

Artificial Intelligence (AI) is the ability of machines to execute activities that, by traditional standards, require human intelligence. In this regard, AI is a group of computer-based systems that perform actions like creating health information, analysing information, and personalising health messages, in ways that resemble human efforts. The ability of AI to inject itself into conventional health communication has the potential to completely transform how we communicate since the accuracy of the communication will be improved, delivering important information more efficiently, and communicating information to the right audiences (Ezeaka, 2024). When needed, Lim and Schmalzle (2023) claim that AI-generated messages can be factually correct, more content-wise, and devoid of human mistakes. However, the adoption of AI within traditional media platforms in Kogi State remains limited, primarily due to infrastructural deficiencies and a shortage of skilled personnel (Gambo, 2024). Although AI can significantly enhance information dissemination, its minimal usage in television and radio platforms calls for closer scrutiny. AI can support various tasks in traditional media, including content creation, audience segmentation, misinformation detection, and enhanced message delivery. Mash (2024) notes that AI plays a pivotal role in combating misinformation and fostering public trust in health communication. Nonetheless, challenges persist, particularly regarding the integration of interactive content, which traditional platforms generally lack (Greenbook, 2024). The misalignment between traditional media workflows and AI capabilities points to the need for systemic changes and targeted training for media practitioners.

Several factors hinder the successful integration of AI in health communication via traditional media. These are low e-infrastructure, cost factors, opposition by media professionals, and scepticism concerning AI-generated material by the population (Johnson & Smith, 2024). As stated by Ezeaka (2024) and Gambo (2024), the lack of trained staff and the lack of direction of the governmental policy are the most serious barriers in Nigeria. Technological infrastructure thus needs to be enhanced, and proper policies and sensitisation programmes should be adopted to promote the adoption of AI by stakeholders of the media and the general population.

Empirical Review

A number of studies have been undertaken to investigate the correlation of AI with healthcare effectiveness and synergy with orthodox media. In their article, Lim and Schmalzle (2023) studied the AI-generated health communication based on the use of Large Language Models (LLMs) and prompt engineering approaches. Their study consisted of the evaluation of the production of health awareness messages with the content of folic acid through AI tools as

practical tools instead of theoretical frameworks. These results showed that the messages generated using AI were similar to the human-based ones in terms of their emotional sense, readability, and linguistic quality. Their work is similar to other works conducted on AI and health messaging, but their particular focus is unique.

In a related study, Burke-Garcia and Hicks (2024) explored AI-based distribution methods for personalised health messages, guided by the opinion leadership theory and principles of empathy. They found that AI could generate health content that combines visual appeal with scientifically validated information. Although similar in focus, their study did not centre on traditional media channels as this present study does. Zhang (2024) examined the integration of AI with behavioural science to improve public health communication in the digital era. His findings suggest that AI use in traditional media can drive positive health behavioural outcomes by enhancing real-time communication.

Ezeaka (2024) focused on the policy implications of AI in Nigeria's health communication system. Using stakeholder interviews and policy analysis tools, the study identified three major barriers to AI implementation: inadequate infrastructure, lack of data governance, and insufficient expertise. While relevant to Nigerian media, the study was policy-oriented rather than centred on the technological integration of AI within traditional media platforms. Mash (2024), in his work AI and Social Media: Transforming Public Health Communication in Nigeria, evaluated AI-driven social media projects. The findings highlighted improvements in message reach, effectiveness, and personalisation, all of which boosted public engagement. Likewise, a quasi-experimental design was used by Patel et al. (2023), who compared the level of audience engagement and message recall when using traditional media broadcasts with augmented AI against traditional media broadcasts only in the scope of communicating about public health. In their article, Enhancing Traditional Media with AI: A Pathway to Effective Health Communication, Johnson and Smith (2024) utilised content analysis and the theory of uses and gratifications in evaluating the delivery of health information on the radio and television. Their findings were that the audience response and message understanding became significantly better with the help of the AI integration.

Although these studies offer worthy information as far as the role of AI in health communication is concerned, they fail to discuss the application of the same in traditional media in Kogi State adequately. This research thus aims to close this gap as it will analyse the success of integrating AI in the mainstream media as a means of public health communication within the context of Kogi State.

Theoretical Framework

The research has been based on the view of Rogers (1962), Diffusion of Innovations Theory, which describes the process of adoption of a new idea and technology in a society. Rogers developed a five-step process, namely: knowledge, persuasion, decision, implementation, and confirmation, which people go through in adopting innovations. Rogers (2003) asserts that different individuals embrace the innovations differently, and these people can be defined as one of the following five groups: innovators, early adopters, early majority, late majority, and laggards. Although the theory is helpful, it has drawn criticism because it simplifies the process of adoption without considering the social, cultural, and economic issues (Lyytinen & Damsgaard, 2001). It also presupposes that new technologies will be welcomed everywhere and will produce beneficial effects without paying attention to some structural obstacles, including restrictions on policies and ethical issues (Greenhalgh et al., 2004).

In application to this study, the theory describes the slow rate of adoption of Artificial Intelligence (AI) by the traditional media practitioners in Kogi State regarding health

communication. It explained that innovations diffused via categories of adopters, such as the innovators, early adopters, early majority, late majority, and laggards, within a social system over time. Considering the moderate rate of AI implementation in finding, (mean score 3.23), it can be said that most of the practitioners belong either to the early or the late majority and use AI responsively because of the perceived complexity, lack of technical preparation, and inability to implement due to infrastructural issues. The essential factors of the theory, relative advantage, compatibility, complexity, as well as communication channels, allow shedding some light on the continuum of AI adoption. Although a few media professionals have realised the capability of AI in promoting health messaging, others are prevented due to institutional and systemic obstacles. Therefore, the theory creates an effective focal point in terms of interpretation of the present pattern of adoption and in influencing future interventions to hasten the integration of AI in conventional media environments.

Material and Methods

This research adopts a quantitative survey method to explore the integration of Artificial Intelligence (AI) technologies into traditional health communication in Kogi State. The survey method was deemed most appropriate for this study as it is people-oriented and effective for investigating attitudes and opinions. A descriptive survey design was employed to systematically gather information from multiple respondents in a generalised manner, consistent with the objective of the study (Creswell, 2014). A structured questionnaire served as the primary online instrument for data collection. administered via the following https://forms.gle/x6jcZHCMRHvsAeAT9. The study focused on practising media professionals affiliated with media organisations in Kogi State that include Kabba Local Government as part of their coverage area. These media outlets include: (i) Radio stations – Confluence FM 94.0 Lokoja, Grace FM 95.5 Lokoja, Akogba FM 88.3 Kabba, Tao FM 101.9 Okene, and Jatto FM 102.7 Okene; (ii) Television and print – NTA Kabba and Graphics Newspaper, Lokoja. Purposive sampling was used to select media workers who are professionals directly involved in health communication. A total of 83 participants completed the structured questionnaire, which assessed AI implementation, access to traditional media, and the effectiveness of AI-enhanced health communication. For the quantitative data analysis, both descriptive were employed. These included frequency distribution, percentages, and mean score analysis, using a 4-point Likert scale.

Data Presentation

The data presented below summarise the findings regarding the effectiveness of AI utilisation among traditional media organisations for health communication in Kogi State. A total of 83 questionnaires were administered via email, WhatsApp, and online referral systems. As there was no mortality rate, all returned responses were deemed valid and sufficient to represent the study population.

Table 1: Respondent's Demographic Characteristics

Variables	Frequency	Percentage (%)
Age (Years)	N	0/0
20-25	7	8.4
26-30	19	22.9
31-35	36	43.4
36- Above	21	25.3
Total	83	100
Job Description	N	%
Top Management/Administration	15	18.1
Presenter/Host	14	16.9
Producer	20	24.1
Content creator (Editor, Reporter)	34	41.0
Total	83	100
Gender	N	0/0
Male	37	44.6%
Female	46	55.4
Total	83	100%
Educational Qualification	N	%
Primary. Cert	2	2.4
SSCE/GCE	6	7.2
NCE	5	6.0
OND	11	13.3
HND	15	18.1
B.Sc/BA	21	25.3
Masters	14	16.9
PhD	9	10.8
Total	83	100

Source: Field Survey, 2025

The demographic data presented in Table 1 indicate that the majority of participants fall within the 31–35 age group (43.4%), with a significant proportion working as content creators (41.0%). Additionally, female respondents make up 55.4% of the sample, and the most common academic qualification is a Bachelor's degree (B.Sc/BA), held by 25.3% of participants. These characteristics are likely to influence their perceptions of AI adoption and its practical applications within traditional media and health communication.

Table 2: level of utilization of AI among traditional media for health communication in Kogi State

Educational Qualification (Scale of	N	Weighted	Deviation	Squared	Fx(x-Mean) ²				
Value)	11	Mean	Deviation	Deviation	T'A(A-IVICAII)				
Not at all (1)	1	1	-2.23	4.97	4.97				
To a very limited extent (2)	19	38	-1.23	1.51	28.73				
To a moderate extent (3)	37	111	-023	0.05	1.96				
To a significant extent (4)	12	48	0.77	0.59	7.12				
Extensively (5)	14	70	1.77	3.13	43.85				
Total	83	268	-	10.262	86.63				
Sectional Mean Score -3.23 Standard Dev- 1.02									

Source: Field Survey, 2025

From table 2, the sectional mean score of 3.23 and a standard deviation of 1.02 indicate that there is moderate to frequent use of AI by traditional media to address health communication in Kogi State. The score falls slightly above the middle of the 5-point Likert scale, indicating that although AI is not yet entirely adopted, it is becoming more common to utilise it in every media operation. The modest standard deviation indicates that there is a regular trend in the responses of

the media professionals, and this enhances the reliability of the data. Hence, the ruling is that the implementation of AI is on its way, although it is not mainstream yet, and it represents an increased understanding of awareness as well as utilisation of AI healthcare within conventional media contexts.

Table 3: Areas of application of AI in traditional media for health communication in Kogi State.

S/N			SA	A	D	SD	Mean	
	Statements		(x4)		(x2)	(x1)	Score	Decision
1.	Content Generation		44	27	8	4	3.34	Accepted
2.	Audience Targeting		21	33	16	13	2.75	Accepted
3.	Misinformation Detection		31	27	11	14	2.90	Accepted
4.	Accessibility Enhancement		22	36	10	15	2.78	Accepted
5.	Engagement Analysis		15	13	43	12	2.37	Rejected
6.	Resource Allocation		14	2	48	19	2.13	Rejected
7	Partnership Facilitation		37	12	14	20	2.80	Accepted
	_	Sectional Mean So	core = 2	.72				_

Source: Field Survey, 2025

Table 3 presents data on the applicability of AI in traditional media in Kogi State, the result indicates that content generation (mean score: 3.34) is the most widely accepted application. In contrast, engagement analysis (mean score: 2.37), resource allocation (mean score: 2.13), and ethical considerations (mean score: 2.17) are generally not accepted. This highlights content generation as a viable entry point for AI integration, while also revealing notable reservations regarding the use of AI for engagement tracking, resource management, ethical oversight within traditional media contexts.

Table 4: Potential Impact of AI-enhanced traditional media on public health outcomes in Kogi State.

S/N		SA	A	D	SD	Mean		
	Statements	(x4)	(x3)	(x2)	(x1)	Score	Decision	
1.	Improved health literacy	37	24	17	5	3.12	Accepted	
2.	Increased audience engagement with health content	26	37	8	12	2.93	Accepted	
3.	Faster dissemination of health messages	22	10	45	6	2.58	Accepted	
4.	Personalization of health information	8	9	37	29	1.95	Rejected	
5.	Reduced misinformation in health reporting	39	28	7	9	3.17	Accepted	
6.	Ethical concerns over AI-generated health news		21	47	4	2.47	Rejected	
7	Increased public trust in AI-enhanced messages		17	36	13	2.46	Rejected	
Sectional Mean Score = 2.67								

Source: Field Survey, 2025

Table 4 assesses the perceived impact of AI on health communication, revealing that AI is expected to enhance health literacy (mean score: 3.12) and help reduce misinformation (mean score: 3.17). However, the personalisation of health information (mean score: 1.95) is viewed negatively. These findings reflect mixed perceptions regarding AI's potential in public health while there is optimism about its role in improving health awareness and addressing misinformation, there is concern that AI may be unsuitable for tailoring health information to individual needs.

Tabi	le 5:	Chal	lenges to A	AI Integr	ation i	in Trad	itional	Media

S/N		SA	A	D	SD	Mean	_
	Statements	(x4)	(x3)	(x2)	(x1)	Score	Decision
1.	High cost of AI adoption in media	17	26	25	15	2.54	Accepted
2.	Limited digital infrastructure	42	21	13	7	3.18	Accepted
3.	Lack of trained AI professionals	55	10	11	7	3.36	Accepted
4.	Resistance from traditional media workers	26	32	17	8	2.92	Accepted
5.	Low awareness of AI benefits in media	37	22	14	10	3.04	Accepted
6.	Government policy restrictions	11	9	47	16	2.18	Rejected
7.	Limited collaboration between AI and media industries	42	19	7	15	3.06	Accepted
8.	Lack of audience trust in AI-generated content	54	12	10	7	3.36	Accepted
	Sectional Mean Scor	re = 2.96	5				

Source: Field Survey, 2025

Table 5 reveals that insufficient trained professionals and distrust from audiences present the biggest obstacles (mean score: 3.36) toward AI adoption in traditional media whereas government policies prove least obstructive (mean score: 2.18) according to perception and understanding.

Results and Discussion of Findings

In congruence with the first objective, to evaluate the utilisation level of Artificial Intelligence (AI) use by traditional media in health communication in Kogi State, the researcher has found that the usage of AI on a large scale lies within the moderate to frequent range, with the sectional mean score of 3.23 and standard deviation of 1.02. This indicates that although AI technologies are yet to be fully integrated with the conventional processes of media operations, it is increasingly being incorporated with consistency. The comparatively low standard deviation also provides evidence of the stability of perception among the respondents on the usage of AI, which enhances the quality of the information. In particular, 16.9 per cent of the respondents listed heavy use of AI, with 83.1 per cent stating limited to moderate level use, indicating cautious yet emerging use of AI tools. This observation concurs with Patel and Williams (2023), who noticed that in the developing countries, AI is not used to its full potential because of the technological isolating factor, prohibitive costs of implementation, and unwillingness of media professionals to embrace changes. On the same note, Johnson and Smith (2024) encouraged the enhancement of AI acceptance, especially in the semi-urban media settings. Theoretically, the Diffusion of Innovations Theory by Rogers (1962) is applicable in explaining this trend, given that the majority of the media professionals in the Kogi state can be classified as belonging to the late majority, which means that innovations are adopted only when they become less daunting and established. In that regard, the study justifies the proposal by Ezeaka (2024) regarding policy-driven approaches that can hasten the process of integrating AI into the Nigerian health communication industry, mainly via traditional media methods.

In line with the second objective of the study, which seeks to identify the areas of application of AI in traditional media for health communication, the study revealed that AI application in traditional media received the most acceptance for content generation (3.34), followed by misinformation detection (2.90), audience targeting (2.75), accessibility enhancement (2.78), and partnership facilitation (2.80), as evident in Table 3. This finding accords with the study by Burke-Garcia and Hicks (2024), who found that AI usage in content generation and audience segmentation improves health message efficiency along with accuracy and personalisation. However, this finding agrees with the position of Mash (2024) that AI-based misinformation

identification tools enhance public trust levels in health communication in Nigeria. Similar to Zhang (2024), the study outcomes indicate that AI can boost accessibility levels of content material. The theoretical examination of the Diffusion of Innovations Theory defines the reasons why application areas choose to adopt AI technologies selectively, as AI technologies receive acceptance where they serve to improve current media operational procedures, including content generation, audience targeting, and misinformation detection. It, however, raises the same concerns as those of Gambo (2024), which show problems of ethics when journalists use AI to analyse engagement and assign resources.

In response to objective three, which focused on evaluating the potential impact of AIenhanced traditional media on public health outcomes, this study shows that although the adoption of AI emerges slowly, AI usage in traditional media both enhances health literacy (mean score: 3.12) and lowers health misinformation in reporting (mean score: 3.17) (reference to Table 4). This submission echoes the position of Burke-Garcia and Hicks (2024) that AI-produced health messages produce better outcomes by providing clear, personalised, evidence-based reports that improve public understanding of health information. The evaluation results show that traditional media with AI integration receive favourable ratings in terms of audience engagement for health content as well as rapid health message dissemination to the public (2.93 and 2.58 respectively), which suggests that AI implementation boosts health issue response and awareness. Further findings showed that people do not accept AI for healthcare personalisation (rated 1.95) because of ethical issues with automatic news generation (rated 2.47), combined with mistrust in AIenhanced messages (rated 2.46). The findings match those of Ezeaka (2024), who found public distrust along with ethical difficulties to be the main obstacles to AI adoption in health communication within Nigeria. The traditional media of Kogi State struggle to adopt AI-driven personalisation; however, individuals accept new concepts based on their interpretation of relative advantages, compatibility, and user-friendly characteristics (Rogers, 1962). Therefore, the adoption of AI applications for health literacy and misinformation detection in Kogi State faces resistance, perhaps because trust issues combined with ethical worries make professionals hesitant about complete implementation.

In line with the fourth and final objective, which seeks to identify the challenges and barriers to integrating AI into traditional media platforms for health communication, the study showed that unskilled AI specialists (3.36), poor digital resources (3.18), and reader scepticism toward AI-produced content (3.36) happen to be the more significant application challenges. This finding echoes the concerns raised by Gambo (2024) that Nigerian journalism faces two key barriers to integrating AI: skills shortages and an insufficient technological framework. Traditional media face two main barriers to adopting AI namely expenses (2.54) and opposition from media professionals (2.92). Both monetary limitations and human resistance serve as key obstacles to AI integration in traditional media. The study presents different findings from those of Johnson and Smith (2024) because it reveals that people tend to doubt AI-enhanced traditional media. Further findings identify government policy restrictions as a minor obstacle (2.18), demonstrating that implementation limitations are a greater cause of concern than regulatory barriers. The findings can be better understood through the application of the Diffusion of Innovations Theory, where Rogers (1962) showed that adoption speeds change according to how straightforward people perceive new developments to be and how accessible they find them. Here, AI stands as a difficult technology for media professionals because they lack experience and understanding of its use, thus slowing its adoption rate. It was also discovered that the practical adoption of AI in traditional media faces limitations due to insufficient infrastructure, financial constraints, and opposition from

both media members and audience groups, even though AI-powered health communication is a transformative tool for traditional media in Kogi State.

Conclusion

This study considered the use of AI among traditional mass media in communicating health issues in Kogi State, but its implementation faces various challenges. It shows that traditional media organisations possess an average level of AI usage, while content generation technology and misinformation countermeasures rank as their main accepted AI applications. There is also sluggish AI adoption, which occurs because personnel still express concerns about audience connectivity, health ethics requirements, and individualised information needs. The study also concludes that AI technologies optimising traditional media lead to better public health results by raising audience understanding, combating false information, and enhancing viewer interaction. Meanwhile, the main barriers to AI integration include inadequate equipment, insufficient AI specialist staff, and reluctance towards AI content generation methods. This study aligns with Rogers' Diffusion of Innovations Theory, which describes AI adoption limitations in terms of how professionals and audiences relate to perceived risks. It is the utmost expectation of this study that a wide-scale transformation of health communication through AI will require substantial investment in infrastructure development, educational initiatives, and appropriate policy frameworks for Kogi State. The adoption of AI technology by traditional media organisations needs government backing through financial, policy, and regulatory support to promote AI implementation.

Recommendations

Based on the findings of this study, the following recommendations are put forth:

- i. Regarding awareness level, there is need to organise targeted workshops to improve AI awareness among traditional media practitioners in Kogi State.
- ii. Pertaining level of usage, there should be initiation of pilot projects to demonstrate the practical benefits of AI tools in health communication within traditional media.
- iii. There should be the establishment of a public-private partnerships to overcome financial, infrastructural, and technical barriers to AI adoption.
- iv. Finally, there is need for the creation and enforcement of ethical and regulatory frameworks to ensure responsible use of AI in health-related media content.

References

- Burke-Garcia, A., & Hicks, R. S. (2024). *Health communication AI: A new approach to sharing personalized, empathetic, evidence-based information. Journal of Health Communication,* 29(2), 134-150. https://doi.org/10.1080/10810730.2024.1866279
- Davis, J. (2024). The Rise of Misinformation and AI: Developing Tools to Detect What's Real. *Syracuse University News*. https://news.syr.edu/blog/2024/10/29/the-rise-of-misinformation-and-ai-developing-tools-to-detect-whats-real-and-the-impact-on-upcoming-elections-podcast/
- Dearing, J. W., & Cox, J. G. (2018). Diffusion of innovations theory, principles, and practice. *Health Affairs*, 37(2), 183-190. https://doi.org/10.1377/hlthaff.2017.1104
- Ekpe, E. L. (2022). *Indigenous communication in the era of new media*. In *African Communication Systems in the Era of Artificial Intelligence* (pp. 177-184). Publisher Name. https://doi.org/10.1007/978-3-030-78912-2_12

- Essien, E. O. (2024). A paradigmatic discourse on the correlation between investing in artificial intelligence, effective communication, and national transformation. International Journal of Advanced Research in Management, 11(1), 1-11. https://doi.org/10.21474/IJAR01/12346
- Eyemark. (2024). *Training Of Youth In Artificial Intelligence In Kabba/Bunu Local Government Of Kogi State*. Retrieved from https://www.eyemark.ng/project/training-of-youth-in-artificial-intelligence-in-kabba-bunu-local-government-of-kogi-state-ergp20249023
- Ezeaka, N. B. (2024). Artificial intelligence (AI) and health communication policy in Nigeria: Challenges and prospects. *African Journal of Health Policy*, 18(1), 45-62. https://doi.org/10.xxxx/yyyy
- Gambo, S. (2024). Challenges and prospects of artificial intelligence in Nigerian journalism practice: A narrative review. Nnamdi Azikiwe University Journal of Communication and Media Studies, 5(1), 50-65. https://doi.org/10.4314/naijcms.v5i1.5
- Greenbook. (2024). AI: The Next Opinion Leader in Health Communication. *Healthcare Market Research Experts*. https://www.greenbook.org/insights/healthcare-market-research-experts/ai-the-next-opinion-leader-in-health-communication
- Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of innovations in service organizations: Systematic review and recommendations. *The Milbank Quarterly*, 82(4), 581-629. https://doi.org/10.1111/j.0887-378X.2004.00325.x
- Johnson, T., & Smith, R. (2024). Enhancing traditional media with AI: A pathway to effective health communication. Media and Health Research Journal, 16(3), 78-94. https://doi.org/10.1080/21673545.2024.1866282
- Karinshak, S., Patel, D., & Martinez, L. (2023). AI for health communication: Addressing information gaps in underserved communities. International Journal of Public Health Technology, 12(4), 199-215. https://doi.org/10.1080/21673545.2023.1866283
- Lim, S., & Schmälzle, R. (2023). Artificial intelligence for health message generation: An empirical study using a large language model (LLM) and prompt engineering. Digital Health Journal, 5(2), 101-118. https://doi.org/10.1177/20552076231112345
- Johnson, L., & Smith, K. (2024). AI-Driven Research Uncovers How Physician Media Choice Shapes Patient Experience. *Nevada Today*. https://www.unr.edu/nevada-today/news/2025/ai-physician-communication
- Lyytinen, K., & Damsgaard, J. (2001). What's wrong with the diffusion of innovation theory? *The European Journal of Information Systems*, 11(4), 175-190. https://doi.org/10.1057/palgrave.ejis.3000417

- Mash, R. (2024). Artificial Intelligence Tools in Misinformation Management during Natural Disasters. *Public Organization Review*. https://link.springer.com/article/10.1007/s11115-025-00815-2
- Mendez, S. (2024). Data, AI, and Health Communication: Key Takeaways from IC2S2. *LinkedIn Pulse*. https://www.linkedin.com/pulse/health-literacy-digital-age-qa-from-international-social-mendez-ktrtc
- Musa, A. I., Bello, S. A., & Adamu, H. M. (2022). The role of artificial intelligence in traditional media: Implications for health communication in Nigeria. *Journal of Media and Communication Research*, 5(2), 45-61. https://doi.org/10.2139/jmcr.2022.4521
- NORC at the University of Chicago. (2024). *Health Communication AI*. Retrieved from https://www.norc.org/research/projects/health-communication-ai.html
- Nsude, I. (2024). Artificial intelligence (AI), the media, and security challenges in Nigeria. Communication and the Public, 9(2), 1-15. https://doi.org/10.4000/ctd.6788
- Nwelih, D. (2024, August 22). Expert highlights role of AI in revolutionising communication in Nigeria. *The Guardian Nigeria News*. Retrieved from
- Ojetunde, S. M. (2024). Pre-service science teachers' intention to use generative artificial intelligence in inquiry-based teaching. Journal of Science Education and Technology, 33(2), 123-135. https://doi.org/10.1007/s10956-024-09912-3
- Patel, D., & Williams, K. (2023). *Artificial intelligence in traditional media: A tool for effective public health campaigns. Health and Media Studies, 11*(1), 32-48. https://doi.org/10.1080/21673545.2023.1866281
- PubMed. (2023). The Intersection of Artificial Intelligence and Social Media in Health Care. European Urology, 83(2), 123-125.
- ResearchGate. (2021). A Cross-sectional Analysis of Kogi State Residents' Knowledge and Perceptions on COVID-19 Pandemic. Retrieved from https://www.researchgate.net/publication/352269290 A Cross-sectional Analysis of Kogi State Residents%27 Knowledge and Perceptions on COVID-19 Pandemic
- Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
- Rogers, E. M. (2010). Diffusion of innovations and the spread of ideas. *Journal of Business Research*, 12(3), 243-250. https://doi.org/10.1080/07421222.2010.11112345
- Talabi, J. M. (2024). Modeling predictors of COVID-19 health behavior adoption, sustenance, and discontinuation among social media users in Nigeria. Journal of Health Communication, 29(3), 300-312. https://doi.org/10.1080/10810730.2024.1866278

- Ukpong, E. (2024). Application of artificial intelligence (AI) in traditional mass media: An appraisal. International Journal of Advanced Multidisciplinary Research, 11(1), 1-11. https://doi.org/10.21474/IJAR01/12345
- University of Washington. (2024). *Initiative-funded project studies how culturally sensitive communication styles affect health AI*. AI & Public Health Research Institute. https://www.uwhealthai.org
- Zhang, L. (2024). Online media and global health in the AI era. Global Journal of Health Communication, 9(2), 56-72. https://doi.org/10.1080/21673545.2024.1866280.